Probabilistic inference for solving (PO)MDPs

نویسندگان

  • Marc Toussaint
  • Stefan Harmeling
  • Amos Storkey
چکیده

The development of probabilistic inference techniques has made considerable progress in recent years, in particular with respect to exploiting the structure (e.g., factored, hierarchical or relational) of discrete and continuous problem domains. We show that these techniques can be used also for solving Markov Decision Processes (MDPs) or partial observable MDPs (POMDPs) when formulated in terms of a structured dynamic Bayesian network (DBN). The approach is based on an equivalence between maximization of the expected future return in the time-unlimited MDP and likelihood maximization in a related mixture of finite-time MDPs. This allows us to use expectation maximization (EM) for computing optimal policies, using arbitrary inference techniques in the E-step. Unlike previous approaches we can show that this actually optimizes the discounted expected future return for arbitrary reward functions and without assuming an ad hoc finite total time. We first develop the approach for standard MDPs and demonstrate it using exact inference on a discrete maze and Gaussian belief state propagation in non-linear stochastic optimal control problems. Then we present an extension for solving POMDPs. We consider an agent model that includes an internal memory variable used for gating reactive behaviors. Using exact inference on the respective DBN, the EM-algorithm solves complex maze problems by learning appropriate internal memory representations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expectation-Maximization methods for solving (PO)MDPs and optimal control problems

As this book demonstrates, the development of efficient probabilistic inference techniques has made considerable progress in recent years, in particular with respect to exploiting the structure (e.g., factored, hierarchical or relational) of discrete and continuous problem domains. In this chapter we show that these techniques can be used also for solving Markov Decision Processes (MDPs) or par...

متن کامل

Anytime Algorithms for Solving Possibilistic MDPs and Hybrid MDPs

The ability of an agent to make quick, rational decisions in an uncertain environment is paramount for its applicability in realistic settings. Markov Decision Processes (MDP) provide such a framework, but can only model uncertainty that can be expressed as probabilities. Possibilistic counterparts of MDPs allow to model imprecise beliefs, yet they cannot accurately represent probabilistic sour...

متن کامل

Anytime Algorithms for Solving Possibilistic MDPs and Hybrid MDPs

The ability of an agent to make quick, rational decisions in an uncertain environment is paramount for its applicability in realistic settings. Markov Decision Processes (MDP) provide such a framework, but can only model uncertainty that can be expressed as probabilities. Possibilistic counterparts of MDPs allow to model imprecise beliefs, yet they cannot accurately represent probabilistic sour...

متن کامل

Anytime Algorithms for Solving Possibilistic MDPs and Hybrid MDPs

The ability of an agent to make quick, rational decisions in an uncertain environment is paramount for its applicability in realistic settings. Markov Decision Processes (MDP) provide such a framework, but can only model uncertainty that can be expressed as probabilities. Possibilistic counterparts of MDPs allow to model imprecise beliefs, yet they cannot accurately represent probabilistic sour...

متن کامل

Structured Possibilistic Planning Using Decision Diagrams

Qualitative Possibilistic Mixed-Observable MDPs (πMOMDPs), generalizing π-MDPs and π-POMDPs, are well-suited models to planning under uncertainty with mixed-observability when transition, observation and reward functions are not precisely known and can be qualitatively described. Functions defining the model as well as intermediate calculations are valued in a finite possibilistic scale L, whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006